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Abstract Gambling studies have described a “near-miss effect” wherein the experience of
almost winning increases gambling persistence. The near-miss has been proposed to inflate
the value of preceding actions through its perceptual similarity to wins. We demonstrate
here, however, that it acts as a conditioned stimulus to positively or negatively influence
valuation, dependent on reward expectation and cognitive engagement. When subjects are
asked to choose between two simulated slot machines, near-misses increase valuation of
machines with a low payout rate, whereas they decrease valuation of high payout
machines. This contextual effect impairs decisions and persists regardless of manipulations
to outcome feedback or financial incentive provided for good performance. It is consistent
with proposals that near-misses cause frustration when wins are expected, and we propose
that it increases choice stochasticity and overrides avoidance of low-valued options.
Intriguingly, the near-miss effect disappears when subjects are required to explicitly value
machines by placing bets, rather than choosing between them. We propose that this task
increases cognitive engagement and recruits participation of brain regions involved in
cognitive processing, causing inhibition of otherwise dominant systems of decision-mak-
ing. Our results reveal that only implicit, rather than explicit strategies of decision-making
are affected by near-misses, and that the brain can fluidly shift between these strategies
according to task demands.
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Introduction

Many of the worlds 7.7 million gaming machines (Ziolkowski 2016) intentionally present a
high number of near-miss outcomes (Harrigan 2008). In the Canadian province of Ontario,
for example, slot machines are legally permitted to exhibit near-misses at a rate twelve
times above chance (AGCO 2014). Near-misses are outcomes that result in no reward or
financial payout, yet appear proximally close to a win. In many activities, such as bowling,
nearly missing an optimal outcome (a strike) is an informative indicator of performance
that is useful for improvement. In games of chance however, near wins are no more
informative than losses. Nonetheless, they have significant effects on gambling behaviour,
such as increasing the time spent gambling (Coté et al. 2003; Kassinove and Schare 2001).

Near-misses are reported as more similar to a win than to a full loss in some studies
(Dixon et al. 2011), but also as less pleasant than full misses in others (Strickland and
Grote 1967). Reid (1986) provides two explanations to reconcile these apparently dis-
crepant reports. First, the near-miss may induce frustration when expected outcomes are
violated, strengthening ongoing behaviour in a way similar to a win (Amsel 1958). Dixon
et al. (2011) support this theory, finding that near-misses evoke physiological reactions
indicative of frustration to a greater extent than do wins or losses (Otis and Ley 1993;
Osumi and Ohira 2009). Second, symbols indicating reward become conditioned rein-
forcers, so their presentation in near-misses have a reinforcing effect that promotes per-
sistence (Skinner 1953). For example, Wohl and Enzle (2003) demonstrate that modest
payouts following near losses increase the perception of personal luck and increase sub-
sequent bet sizes, whereas identical payouts after missing much larger wins have the
opposite effect. Therefore, the near-miss may act as a contextually dependent conditioned
stimulus (CS) that is pleasing in negative contexts (relieves expected losses), but is frus-
trating in positive contexts (subverts expected wins).

We first investigated how reward, attention, and feedback influence the near-miss effect
in a choice task among two simulated gambling machines. One machine had a net positive
payout, while the other was negative. We found that choice stochasticity and the ability to
avoid machines with negative expected returns was the primary determinant of perfor-
mance in the task. Furthermore, the near-miss effect on machine valuation depended on
reward expectation. Near-misses were valued more than losses on the negative payout
machine, but less than losses on the machine with a positive expected return. We replicate
this contextual effect, also finding that it is robust against changes to payment and per-
formance feedback.

These first experiments failed to address whether the near-miss affects explicit choice
valuation or implicit biases (Guillaume et al. 2009). However, imaging studies have
revealed neural correlates of the near-miss in the insula, ventral striatum, and it’s
dopaminergic inputs from the substantia nigra (SNr) and ventral tegmental area (VTA)
(Clark et al. 2009; Chase and Clark 2010; Clark et al. 2014; Habib and Dixon 2010). Given
that these brain structures mediate valuation, motivation, habits, and sensorimotor control
of choices, we expect that implicit choice mechanisms are at play (Yin and Knowlton
2006; Graybiel 2008; Jog et al. 1999; Yu et al. 2010). In contrast, cognitive systems such
as the medial prefrontal cortex (mPFC) and orbitofrontal PFC (OFC) do not respond to the
near-miss (Clark et al. 2014; van Holst et al. 2014), but instead inhibit sensorimotor
control over behaviour (O’Doherty et al. 2004; Jahanshahi et al. 2000; Knoch et al. 2005).
These regions are also sensitive to the size of received rewards and punishments (O’Do-
herty et al. 2001), suggesting a role in explicit valuation of choices. Furthermore, reducing
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perceived control over gambling choices (Langer 1975) activates the OFC, while reducing
activity in the dorsal striatum, dorsal anterior cingulate cortex (ACC), and rostral ACC
following rewards and near-misses (Walton et al. 2004; Tricomi et al. 2004; Clark et al.
2009). Therefore, we hypothesize that recruitment of cognitive systems through reduced
choice control and explicit valuation of choices suppresses habitual behaviour, mitigating
the near-miss effect.

To test this hypothesis, we investigated whether the contextual near-miss effect persists
when placing bets on, rather than choosing between, gambling machines. We found that
near-misses are valued no differently than losses in this task, regardless of reward
expectation. Near-miss proportions also no longer affect discrimination between the two
gambling machines. Instead, near-misses influenced the valuation of all choices, sug-
gesting that the near-miss acts on arousal, rather than choice valuation.

Methods
Experiments 1 & 2: Binary Choice Task

The behavioural task was programmed in VB.NET using a Windows computer. It was
presented on a touchscreen tablet with a 10.6” monitor. The task display consisted of two
simulated electronic gaming machines, each activated by distinct buttons (Fig. 1). Pressing
either button would cause three reels in the associated machine to randomly iterate through
five distinct images of fruit at different rates for 3.36 s before simultaneously stopping and
displaying an outcome. Winning outcomes were displayed as three matching fruit icons
followed by a dialog box stating that 10 credits had been won. Losing outcomes consisted
of three non-matching icons followed by a message that 10 credits had been lost. Near-
misses were identical to losses except that they were displayed as two identical icons
followed by a third mismatch. In Experiment 1, the cumulative total of credits was updated
after each trial and displayed at the top of the screen. However, in Experiment 2 this
counter was removed for half of the subjects, in order to reduce outcome feedback.

1. Experiment 1 & 2 Choice Selection

Credits
100

o o 2. Outcome Anticipation

Credits

T Uee
1. Experiment 3 Bet Selection 3. Outcome Presentation
= . .. = | |
100 110 . . .

Fig. 1 Timeline of trials in Experiments 1-3. In Experiments 1 & 2 (top left) participants chose between two
simultaneously presented slot machines. In Experiment 3 (bottom left) a machine was randomly chosen and
highlighted in red. Participants were given 16 bets to choose between. The outcome anticipation (middle) and
outcome presentation (right) stages were the same between all experiments (Color figure online)
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During the course of the experiment, one machine would be “hot” (60% of trials were
wins) and the other “cold” (40% of trials were wins). Additionally, each machine could be
“balanced” or “unbalanced” such that they would have a respective 1/3 or 2/3 probability
of presenting a near-miss instead of a loss. These probabilities remained constant
throughout the task.

Experiment 3: Value Judgement Task

The task consisted of two simulated electronic gaming machines visible on one screen, as
in Experiments 1 & 2 (Fig. 1). However, to reduce control over choices and inhibit
habitual, sensorimotor responding, the machine to be played was randomly selected by the
computer on each trial and highlighted in red. The participant was then required to place
bets in values ranging from 5 to 80 points in 5 point increments by pressing one of 16
values displayed on the bottom of the screen. A minimum value of 5, rather than O points
was selected to prevent subjects from adopting a default strategy of avoiding decisions, and
ensure all experienced outcomes were wins or losses. The bet procedure was identical for
either selected machine. After the bet was selected, the highlighted machine would spin
and display an outcome as in Experiment 1. On a loss or near-miss outcome, the amount
bet would be subtracted from the subject’s total credits, while on a win, twice the bet
amount would be returned. All other features of the task were identical to that used in
Experiment 1.

Participants

One hundred ninety-two undergraduates from the University of Lethbridge, McMaster
University, and members of the greater community participated in the study (50 males,
mean age = 19.40, SD = 3.76). Sixty-four subjects participated in Experiment 1 either as a
volunteer or in return for course credit. Ninety-six participated in Experiment 2, in
exchange for either course credit (n=48) or course credit and payment of $10 (n=48).
Participants were assigned to one of four groups of twenty-four participants each in a
feedback x payment design. Thirty-two participated in Experiment 3 in exchange for pay
and course credit in psychology.

Procedure

All procedures and experimental tasks were approved by the University of Lethbridge
Human Subjects Review Committee and the McMaster University Research Ethics Board.
After providing informed consent, subjects completed one of the three experimental tasks
using a provided touchscreen pen. They were given a starting balance of 100 credits and
instructed to use the two machines to gain as many credits as possible. In Experiment 2,
paid participants were also informed that their payment was conditional upon reaching a
certain undisclosed score and that failure to reach this score by the end of the experiment
would result in no payment. These instructions were a deception, designed to ensure
maximal attention to the task. At the end of the experiment, all paid participants were
informed of this deception and paid in full, regardless of task performance. Subjects in
Experiment 3 were instructed to use the 16 bet options to gain points, altering their bets in
response to the machine selected by the computer.

@ Springer



J Gambl Stud (2018) 34:181-197 185

Subjects were also requested to refrain from stereotypical behaviours (i.e., selecting a
single machine, alternating between machines each trial) and informed to continue playing
should the counter become negative. No other direction was given. Once 350 trials were
completed, a screen indicating the final score was displayed.

After task completion, subjects were screened with the Problem Gambling Severity
Index (Ferris and Wynne 2001), CAMH Gambling Screen, World Health Organization
ASSIST v3.0, and an additional demographic questionnaire. Those indicating ADD/ADHD
diagnoses, a history of problem gambling behaviour, or substance abuse were eliminated
from the study and replaced with additional participants. Seven subjects were replaced
using these criteria. An additional subject was removed from Experiment 3 for betting 5
points on all 350 trials.

Computational Modeling

Subjects’ responses in Experiments 1 & 2 were coded as a “1” or “0” depending on
whether the hot or cold machine was selected. Choice data was fit to a stochastic variant of
the Q-Learning model (Sutton and Barto 1998), as described by Daunizeau et al. (2014):

O = Qz+0‘z+1(rz+1 _Qt)' (1)

This model (Eq. 1) allows for estimation of how choices and experienced outcomes
influence internal value estimations of the hot (Q) and cold (Q€) machines using a
dynamic learning rate (o;). In particular, these changes in valuation are updated by the
prediction error signal (r,.; — Q;) that represents the difference between current outcomes
and expected rewards. This signal is strongly correlated with the firing of midbrain
dopamine neurons (Holroyd and Coles 2002; Bayer and Glimcher 2005) making it of
particular relevance to human decision-making. Furthermore, the learning rate represents
how much of an influence current reward (r,) has on the future estimated value of the
action (Qy11).

The probability of selecting the hot and cold machines (M',i € [H, C]) was determined
using the softmax equation parameterized by the inverse temperature (f3):

expO;
Zj expPQ; 7

where f§ controls the tradeoff between exploitation and exploration of available actions. A
high f increases the probability of selecting the most highly valued option, while a low
value makes choices more stochastic. In the context of the present experimental task, a
high f is ideal because reward probabilities remain constant throughout the task. Rather
than independently estimating hidden states on each trial, values at each trial ¢ were
updated according to the posterior density estimates for states at trials 1 to t + k using a
Kalman filter (Daunizeau et al. 2009). The use of the forward-pass lag k (set to 16 trials)
allows for observation of how changes in hidden states at trial ¢ influence future hidden
states and helps to smooth hidden state estimates. Choice performance (% hot choices) was
averaged over 7 blocks of 50 trials for each subject. For computing the correlations
between choice performance, O, Q€, «, and B, single values were independently esti-
mated for each subject, averaged across all trials.

To determine how outcomes changed valuation of the hot and cold machines (i.e.,

P,(M') = (2)

hidden state values), we performed a Volterra decomposition of O and Q€ values for each
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trial onto four basis functions: previous choice (P.C.), loss, near-miss, and win, according

to Eq. 3:
X = o’ + Z w%ut,r + Z Z cz)%l o U7 Uiz, + ... (3)

Tl )

Volterra modelling allows for observation of input response characteristics of non-linear
systems as Volterra weights (Boyd et al. 1984). At each trial ¢ the Volterra weight x is
estimated from inputs u over trials ¢ to a lag of 7 (set to 16 trials) using a series of Volterra
kernels @. The first kernel m' represents the linear transformation of lagged input basis
functions into the output, »? represents the effect of past inputs being dependent on other
earlier inputs, and so on. As with prediction error, these weights provide a measure of how
subjects’ valuation of each machine change from baseline in response to past choices and
outcomes. The benefit of Volterra modelling over analysis of raw prediction error is that
the effect of current and past inputs on hidden state responses can be estimated, and inputs
can be orthogonalized so that the effect of one input (e.g., wins) is computed independently
of all other inputs (e.g., previous choice). Inputs were ordered so that the effect of previous
choice on hidden states was subtracted from that of wins, near-misses, and losses during
orthogonalization. To control for trial order effects, we also detrended inputs prior to
decomposition.

All models were implemented in Matlab using the VBA toolbox. All statistical analyses
were performed in R.

Results
Experiment 1
Stochasticity and Cold Machine Valuation (Q€) Drive Choice Discrimination

We compared the effects of hot machine valuation (Qf), cold machine valuation (Q°),
learning rate (), and choice stochasticity (f§) on choice performance by fitting each sub-
ject’s choice data to the reinforcement learning model (Eqgs. 1, 2). Correlations between
performance and parameter estimates for all participants (Fig. 2) show that performance
increases with decreasing valuation of the cold machine (Q°) [r(62) = —.670,p<.001], or
with increasing exploitation (B) [r(62) =.625,p<.001]. In contrast, QF
[r(62) = .184,p = .147] and o [r(62) = —.242,p = .054] contribute relatively little to
performance. Q€ also increases as f§ decreases [r(62) = —.645,p<.001]. Therefore,
choice performance is primarily determined by how well subjects can inhibit valuation of
the cold machine and increase exploitation.

A 2 (Hot Balanced/Unbalanced) x 2 (Cold Balanced/Unbalanced) ANOVA, using
orthogonal contrasts, was applied to choice performance data, collapsed across trial blocks.
While there was no main effect of unbalancing either the hot or cold machines on per-
formance, there was a significant interaction [F(1,444) = 12.132,p<.001] such that
performance is increased in the both-balanced and both-unbalanced conditions, relative to
when only the hot or cold machine is unbalanced (Table 1). Therefore, choice discrimi-
nation is influenced by differences in near-miss proportions between choice options, rather
than the overall proportion of near-misses encountered. Given (i) the strong correlations
between performance and Q€ or f and performance, and (ii) evidence that the near-miss
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Fig. 2 Correlation of choice performance and mean 0¥, Q€, «, or f8 in Experiment 1

Table 1 Performance and persistence following wins (P.W.), near-misses (P.N.), and losses (P.L.) by
unbalancing condition in Experiment 1, and by payment and feedback in Experiment 2

Experiment 1 Experiment 2
HyCp HyCg HyzCy HyCy No Feedback Feedback
Unpaid Paid Unpaid Paid

Perf .66 (.02) .60 (01) .62(02) .68(02) .62(01) .59 (01) .60 (01) .60 (.01)
PW. 81(03) .72(03) .78(03) .73(03) .81(02) .68 (.02) .79(.02) .74 (.02)
P.N. .60 (.03) 46(03) .61(03) .71(02) .52(.02) .54 (.02) .56 (.02) .60 (.02)
P.L. 56 (03) 43(03) .58(.03) .64 (.03) .44 (.02) .51(02) .53 (02) .59 (.02)

SEM in parentheses

increases arousal (Clark et al. 2012; Dixon et al. 2011; Osumi and Ohira 2009), we suggest
that differing near-miss proportions increases choice stochasticity through arousal, a
potential indicator of frustration. This arousal may prevent inhibition of the cold machine
choice (or nullify the difference in Q among actions) and thereby reduce discrimination.

Because the sensorimotor system has been shown to drive rapid response shifting
following losses (Skelin et al. 2014), we next investigated the probability of choosing the
same machine on subsequent trials (persistence) after a win, near-miss, or loss. As seen in
Table 1, persistence following wins decreases when the hot machine is unbalanced
[F(1,444) = 5.984,p = .015]. Furthermore, persistence increases following losses
[F(1,444) = 17.568,p <.001] and near-misses [F(1,444) = 25.276,p<.001] when the
cold machine is unbalanced. A hot x cold interaction with near-misses also influences
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persistence  following losses  [F(1,444) = 11.502,p<.001] and near-misses
[F(1,444) = 21.895,p <.001], in a manner analogous to that seen in performance.

The Near-Miss Effect is Dependent upon Context of Reward Expectancy

To determine the effect of the near-miss on outcome valuation, Volterra decompositions of
immediate changes in hidden states by losses, near-misses, wins, and previous choice as
basis functions were analyzed with two one-way ANOVAs. There was a significant main
effecct of input basis on QFf [F(3,252) =9.494,p<.001] and Q€
[F(3,252) = 24.210,p<001]. Near-misses tended to decrease valuation of the hot
machine from baseline (M = .03,SE = .02) relative to losses (M = .11,SE=.05)
[#(126) = —1.455,p = .148] (Fig. 3). Conversely, they tended to increase cold machine
valuation (M = —.04,SE=.02) relative to losses M = —.12,SE=.04),
[£(126) = 1.781,p = .077]. These effects fell short of statistical significance, and therefore
provide only weak evidence that the effect of the near-miss is contextual. In negative utility
conditions (cold machine), it increases valuation, while in positive utility conditions (hot
machine) it reduces valuation. We show much stronger evidence of this effect in Exper-
iment 2.

Because near-miss proportions may change the extent to which near-misses differ from
losses, we conducted 2 (Hot Balanced/Unbalanced) x 2 (Cold Balanced/Unbalanced)
ANOVAs to assess the difference between near-miss and loss associated prediction error.
As seen in Fig. 3, unbalancing the hot machine increased Q€ values following near-misses
relative to losses (M = .145,SE = .043) compared to balanced (M = .026, SE = .040)
[F(1,60) = 4.057,p = .049]. Unbalancing the hot machine also reduced relative of

response to  near-misses (M = —.131,SE =.044) compared to balanced
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Fig. 3 Effect of previous choice and reinforcement outcome on Volterra weights for Qf and Q€ in
Experiment 1 (fop). Difference between near-miss and loss associated Volterra weights for each balancing
condition (bottom): Hot balanced/unbalanced (Hp/Hy); Cold balanced/unbalanced (Cz/Cy). SEM in error
bars
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(M = —.032,SE = .049), but this difference was not significant
[F(1,60) = 2.153,p = .148]. However, increasing near-miss proportions on the hot
machine seemed to increase the contextual effect of the near-miss on both machines.
Similar ANOVAs on prediction error differences between wins and losses found no effects
of unbalancing conditions on changes in Q' or Q€ (F <2.169, p > .145 in each case).

Experiment 2
Performance is Unaffected by Payment or Feedback

As in Experiment 1, the strong correlation among performance and Q€
[r(94) = —.510,p<.001] and f [r(94) = .706,p <.001] provide confirmatory evidence
that performance is primarily determined by how well subjects can learn to reduce valu-
ation of the cold machine and focus on choice exploitation, rather than exploration
(Table 1, Fig. 4). A moderate correlation between Q€ and [r(94) = —.429,p < .001] was
also found, indicating that valuation of the cold machine and inverse temperature act semi-
dependently on discrimination. Again, the correlation between performance and QF
[r(94) = .132,p = .200] or o [r(94) = —.196,p = .056] was weak, confirming that val-
uation of the hot machine and learning rate are not highly relevant to performance.

As seen in Table 1, a 2 (Paid/Unpaid) x 2 (Feedback/No Feedback) ANOVA collapsing
over trial block and unbalancing conditions, indicated no significant effects of payment or
feedback on performance (F<2.632,p > .104 in each case). However, payment does
significantly decrease persistence after wins [F(1,668) = 21.619,p <.001] and increase it
following losses [F(1,668) = 9.326,p = .002], but has no effect of behaviour following
near-misses. Provision of feedback also increases persistence following near-misses
[F(1,668) = 4.451,p = .035] and losses [F(1,668) = 18.152, p <.001], but does not after
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Fig. 4 Correlation of choice performance and mean Q, Q€, o, or § in Experiment 2
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wins. Regardless, our finding that the effects of Q€ and f8 on performance are replicable
across payment and feedback conditions provide strong support for our conclusion that
performance is driven by choice exploitation and low valuation of the cold machine.

Contextual Effect of the Near-Miss is Independent of Payment and Feedback

Volterra decompositions of hidden states again indicated there was a significant effect of
input basis on o [F(3,380) = 13.057,p <.001] and Q¢ values
[F(3,380) = 52.284,p <.001]. As shown in Fig. 5, near-misses (M = .06, SE = .02) were
valued less than losses (M = .18,SE=.04) on the hot machine
[#(190) = —2.583,p = .011], but near-misses (M = —.06, SE=.02) were valued more than
losses (M = —.17,SE=.03) on the cold machine [¢(190) = 2.694,p = .008]. These results
are consistent with those of Experiment 1 and have greater statistical power. This repli-
cation with different University populations provides strong evidence that the influence of
the near-miss is dependent on outcome context. Further segregation of hidden state
responses by payment and feedback conditions revealed no significant effects of these
treatments on change in o or Q€ following previous choice, loss, near-miss, or win
outcomes (F'<2.233,p > .138 in each case). Therefore, the contextual effect of the near-
miss is robust against differences in payment or outcome feedback, despite their effects on
choice persistence.

The modulatory effect of unbalancing condition on near-miss valuation was the same as
in Experiment 1 when collapsed over payment and feedback conditions. As shown in
Fig. 5, O sensitivity to near-misses was again increased relative to losses when the hot
machine was unbalanced (M = .182,SE = .039), compared to the balanced condition
(M = .040,SE = .032) [F(1,92) =7.942,p = .006]. Unbalancing the hot machine sig-
nificantly decreased relative change in O following near-misses (M = —.186, SE = .041)
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compared to balanced (M = —.052,SE = .037) [F(1,92) =5.744,p = .019]. As in
Experiment 1, there was no effect of balancing condition on change in Q"' or Q€ following
wins, relative to losses (F' <1.277,p > .260 in each case). The difference between wins or
near-misses, relative to losses, was similarly unaffected by payment or feedback conditions
(F<1.728,p > .191 in each case).

One concern is that the contextual effect of the near-miss may result from the differ-
ences in the proportions of losses and near-misses experienced, rather than outcome val-
uation. However, on the cold machine 28.80 and 28.40% of experienced outcomes were
losses and near-misses respectively. On the hot machine, 16.91 and 17.42% of outcomes
were losses and near-misses. These proportions did not differ (3> <1.849, p > .174 in each
case), so the observed effects are most likely due to a difference in outcome valuation.

Experiment 3
Bet Performance

The effects of machine selected and unbalancing conditions on bet amount were tested via
a 2 (Hot Balanced/Unbalanced) x 2 (Cold Balanced/Unbalanced) x 2 (Hot/Cold machine
selected) ANOVA, collapsed across trial block. The average bet size when either the hot or
cold machines were unbalanced [HyCy (M =38.82,SE=1.57), HzCy
(M = 34.36,SE = 1.63)] was significantly higher than when both machines were balanced
or unbalanced [HpCp (M = 22.83,SE = 1.04), HyCy (M = 25.02,SE = 1.05)], as indi-
cated by significant effect of unbalancing the hot machine [F(1,612) = 7.766,p = .005]
and a hot x cold interaction [F(1,612) = 90.346,p <.001] (Fig. 6). There was also a
significant effect of machine selected on bet size [F(1,612) = 4.516,p = .034], but no
machine x unbalancing condition interactions, suggesting that discrimination was not
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Fig. 6 Effect of unbalancing condition on bet size for the hot and cold machines in Experiment 3. SEM in
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influenced by the added near-misses. However, some participants might not utilize all
available bet size options, but select between a limited number (e.g., bets < 40 credits)
even though they could discriminate among hot and cold machines. To correct for this
possibility, bet data were individually transformed into z-scores for each participant, before
averaging into ten trial blocks. As seen in Fig. 6, a second ANOVA again found that bets
on the hot machine (M = .08, SE = .02) were significantly larger than those on the cold
(M = —.08,SE = .02) [F(1,612) =22.898,p<.001]. While the HpCy condition did
seem to exhibit reduced discrimination, there were no effects of hot or cold balance, or a
hot x cold interaction (' <2.186,p > .139 in each case). Therefore, near-miss proportions
influenced bets made towards both machines, but not discrimination between them, when
subjects were asked to explicitly value choice options.

To determine whether the near-miss still had a contextual effect, a 2 (current choice) X
2 (previous choice) x 3 (previous outcome) ANOVA was conducted on bet data. There
was no effect of previous machine selected on current bet size
[F(1,360) = .013,p = .910] (Fig. 7). Current machine selected also had no effect on bet
size [F(1,360) = 1.651, p = .200]. However, previous outcome significantly affected bet
size [F(2,360) = 6.515,p = .002] as bets following wins (M=27.002, SE=1.463) were
significantly lower than those following near-misses (M = 34.673,SE = 1.726)
[#(246) = —3.390,p <.001] and losses (M = 33.910,SE = 1.718) [#(246) = —3.061,p =
.002]. However, near-misses were not different from losses [£(246) = .313,p = .755],
indicating that the contextual effect of the near-miss was eliminated. No significant
interactions were observed.

Discussion

The purpose of our study was to compare the valuation of near-misses to losses and wins in
both winning and losing contexts. We have demonstrated that the effect of the near-miss on
choice depends on the context of reward expectation. The near-miss is more negatively
valued than losses in winning contexts, but it is more positively valued than full losses in
losing contexts. In other words, when participants selected a machine associated with a
high expectation of winning, near-misses violated this expectation and were registered
more negatively than normal losses. However, when participants chose the losing machine,
near-misses subverted otherwise expected losses, causing them to be more positively
valued than losses. This contextual effect on choice is driven by outcome exploitation and
reduced valuation of the cold machine, and is influenced by differences in near-miss
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Fig. 7 Effect of outcome on bets towards the hot and cold machines in Experiment 3. SEM in error bars
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proportions between machines. However, engagement of cognitive systems needed to
generate bet sizes suppresses the effect of the near-miss on discrimination.

Past research has focused on how the near-miss influences persistence towards a single
choice option. This research has led to contrasting reports of whether the near-miss is
positively or negatively valued. By employing a dual choice design we have shown that the
near-miss can negatively or positively influence choices. Our analysis was aided by a
computational reinforcement learning model, which have been very useful for studying
decision making (Balleine and O’Doherty 2010; Ito and Doya 2009). Volterra decompo-
sition of hidden states provides a measure similar to raw prediction error, but is more
informative because it can reveal orthogonalized impulse responses to outcomes, both
current and past (Daunizeau et al. 2014). This analysis allowed us to investigate whether
0", 0, or stochasticity could best account for performance, and which were most affected
by near-misses. When reward expectation is low, such as on the cold machine, near-misses
are more highly valued than losses. However, when reward expectation is high, near-
misses are more negatively valued than losses. This contextual effect provides strong
support for the frustration theory of Amsel (1958). In high reward contexts, failure to reach
expected wins induces frustration, while near-misses reduce frustration in low reward
contexts by subverting losses.

This contextual effect, which is increased by unbalancing the hot machine, also provides
support for Skinner’s description of the near-miss as a conditioned stimulus (Skinner
1953). Past research has demonstrated that the potency of the near-miss to affect behaviour
depends on its relative occurrence, or reliability as an indicator of reward. For example,
Kassinove and Schare (2001) and Kurucz and Kormendi (2012) demonstrate an inverted
“U” relationship between near-miss proportions and gambling persistence; a 30% rate has
a maximal effect, despite subjects being unable to distinguish sets of trials exhibiting 0 and
45% near-misses. This relationship likely results because insufficient or excessive near-
misses reduce the proportion of times symbols are paired with wins, reducing their reli-
ability as an indicator of wins. Pigeons demonstrate analogous behaviour, preferring to
respond in conditions where the CS is strongly predictive of reinforcement over those
where additional presentations of the CS occur without reward, despite increasing response
frequency in the latter case (Schuster 1969). Thus, there appears to be a tradeoff between
the frequency (reliability) of the near-miss and its invigorating effect, either via frustration
or arousing effects as a CS.

Our research further highlights the relationship between the near-miss effect and how
reliably it is paired with outcomes. Unbalancing the hot machine increases its contextual
effect in both high and low reward contexts, suggesting that it becomes reliably paired with
wins or losses. Our finding that unbalancing the cold machine does not also increase the
contextual effect is puzzling, but may highlight the role of frustration, in conjunction with
reliability. In winning contexts, frustration induced by near-misses may be more visceral
than its alleviating effect experienced in positive contexts. Therefore, changes in propor-
tions of positively viewed near-misses may not influence its contextual effect to the same
extent changes in frustrating near-miss proportions.

Near-miss proportions influenced choice discrimination in Experiment 1 and bet size in
Experiment 3, providing further evidence of its ability to evoke frustration or arousal. In
Experiment 1, incongruities in near-miss proportions between the two machines, rather
than number of near-misses experienced, decreased choice discrimination. In Experiment
3, different near-miss proportions increased bet sizes, without affecting discrimination.
Given past research demonstrating that the near-miss increases physiological arousal, and
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the the strong influence of inverse temperature and valuation of the cold machine on
discrimination, we posit the following: Differences in near-miss proportions increase
arousal, causing choices to become more stochastic. This increased stochasticity causes the
low payout (cold) machine to be selected more often, despite it having a lower internal
valuation, thus decreasing performance. Our finding that bet size is increased following
unpleasant outcomes such as losses and near-misses, regardless of the machine selected,
provides further evidence that this increase in arousal is linked to frustration. This increase
is also indicative of the gambler’s fallacy, in which wins are thought to be more likely
following losses (Clotfelter and Cook 1993). However, increased arousal likely accom-
panied this effect, given strong support from the extensive literature linking frustration,
losses, and the near-miss, and our finding that changes in unbalancing conditions also
increased bets, irrespective of experienced outcomes.

Our finding that valuation of the cold (rather than hot) machine was a primary deter-
minant of choice performance highlights the different roles of approach and avoidance
based systems of decision-making. McNaughton and Gray (2000) proposed that negative
stimuli act on attentional systems that inhibit punishing behaviours (i.e., response inhibi-
tion). For example, pathological gamblers and drug addicts exhibit impaired response
inhibition and this impairment predicts reduced performance at the lowa gambling task
(Odlaug et al. 2011; Bechara and Martin 2004; Noél et al. 2007). Negative stimuli,
including gambling losses, also capture attention more effectively than wins (Yechiam and
Hochman 2013) and result in greater event-related potential amplitudes (Smith et al.
2003). Conversely, positive stimuli engage systems associated with exploration and
impulsivity (Pickering and Gray 2001). For example, Gupta (1990) demonstrated that
highly impulsive individuals learn more effectively in response to positive reinforcers,
whereas negative reinforcement is most effective on those exhibiting low impulsivity. As
reward probabilities are fixed in the current study, inhibition of the cold machine is of
greater utility to performance than exploration induced by the hot.

Experiments 1 and 2 relied on one of two motor actions to reveal choices, which may
have relied on implicit habits driven by somatosensory systems sensitive to the near-miss
(Clark et al. 2014, 2009), rather than explicit valuation of choice options. In Experiment 3
we show that the contextual near-miss effect is reduced when subjects are required to bet
on, rather than chose between machines. Removing control over choices has been shown to
inhibit the ACC and sensorimotor striatum (Clark et al. 2009; Walton et al. 2004; Tricomi
et al. 2004), and engage cognitive systems in the prefrontal cortex (e.g., OFC) that further
inhibit habitual responding (Jahanshahi et al. 2000; Knoch et al. 2005) By requiring
subjects to assign a value to choice options we also encouraged reliance on explicit
knowledge of choice value during decision-making (Guillaume et al. 2009), primarily
through activation of the OFC, due to its role in monitoring reward value (O’Doherty et al.
2001). The increase in bet size following near-misses was not statistically different from
that following losses, further indicating that the near-miss effect is reduced through greater
cognitive engagement. Therefore, these data support the hypothesis that the contextual
effect of the near-miss primarily acts on systems responsible for sensorimotor, rather than
goal-directed, decisions.

Neither the contextual effect of the near-miss, or its modulation by near-miss propor-
tions, are influenced by the level of payment or feedback provided to subjects. Instead,
payment and feedback decrease persistence following wins and increase it following near-
misses and losses. Persisting following wins and switching following losses are default
strategies in rats driven by the sensorimotor striatum and nucleus accumbens, respectively
(Skelin et al. 2014; Wong et al. 2016). Our finding that payment and feedback both reduce
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these default strategies suggests that they cause subjects to exert more executive control,
but these changes do not affect overall performance. We can not completely rule out the
possibility that payment and feedback may interact with near-miss proportions. These
interactions would require targeted experiments and larger samples to properly analyze,
and so were ignored in our study. Instead, the purpose of these experiments was to
demonstrate that the contextual effect of the near-miss is robust regardless of changes in
feedback or payment typically employed in laboratory studies of gambling behaviour.

The present data reconcile discrepant reports of the near-miss, demonstrating that it is
both positively and negatively valued, depending on the reward context in which it is
presented. By using a dual-choice design, we find that valuation of a choice is determined
by rewards and near-misses presented on that machine, but also those presented on other
competing choices. Therefore, future studies of gambling behaviour should consider the
expected utility of competing choices, in addition to previously known factors such as
expected reward, near-misses, and attention (Fleming and Dolan 2010).

The present study also demonstrates that the near-miss affects only some subsystems of
the brain’s choice mechanism, providing insights relevant to future research. Our finding
that near-misses influence implicit, rather than explicit, choice valuation suggests the near-
miss effect is specific to certain forms of gambling. For example, poker and sports betting
require explicit bet size selection and may be less susceptible to near-misses than games
that recruit implicit decision-making strategies (e.g., slots). We speculate that this par-
ticular near-miss effect is distinct from other effects of counterfactual outcomes, such as
the tendency of individuals to be more risky in their choices after losses (Brevers et al.
2017). The contextual near-miss effect may be further amplified in habitual gamblers, as
they exhibit increased reliance on implicit biases (Toneatto et al. 1997) and are more
affected by near-misses. Therefore, future work should explore what forms of gambling are
affected by the contextual near-miss, if this interacts with other influences of counter-
factual outcomes, and whether it is further amplified among problem gamblers, particularly
in games that involve implicit decision-making.
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